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Abstract

In an earlier paper, the authors derived a Fredholm

integral equation of the first kind for the solution of the inverse

source problem for acoustic waves. The eigenvalues of this equation

were shown to converge rapidly to zero and also to include zero.

Thus, the solution was shown to be non-unique and even the parti-

cular part of the solution of that equation was ill-conditioned. In

this note it is shown how to obtain the non-trivial information of

that integral equation in a well-conditioned manner.
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In an iarlter paper,1 the authors developed analytical

characterizations of the non-uniqueness of solutions of the inverse

source problem in acoustics and electromagnetics. In this problem

the field radiated by a source distribution is observed on a closed

surface (e.g., a sphere) outside the region containing tne source.

The objective is to obtain information about the source.

It was further shown in Ref. 1, that the source distribution

satisfies a Fredholm integral equation of the first kind with eigen-

values which rapidly approached zero 0 (n2n-3 ) in addition to

the eigenvalue zero, itself. Thus, even the particular solution of

this equation--for that part of the source which could be determined

from the radiated field--is ill-conditioned; i.e., highly unstable

to noise in the "higher" eigenfunctions.

The purpose of the note is to show that the information

contained in that integral equation can, in fact, be obtained in a

well-conditioned manner. The discussion here will be limited to the

acoustic case; the extension to the electromagnetic case is

straightforward.

It is assumed that u(x,w ), x=(x , x . x ), is a
1 2 3

solution of the inhomogeneous Fourier (time) transformed wave

equation,

(V2 + W2c-2 ) u(x, W) = -f(x, W), (1)

subject to the radiation condition

2
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A

u(L, w)-- u (x, W) exp{iwx/cl /(47r x), x -) . (2)

Here, x denotes a unit vector in the direction of x and x = ILI is

the magnitude of the vector x.

The source function f(x, w) is assumed to be confined to

the interior of a sphere of radius a. For observations outside of

this sphere, the solution has the integral representation

cO m hm(1)(wx/c)Ymn( ) (3)u(L, w) = iwc-' E E Cmn (3)
m=O n= -m

Here,

a

Cmn = f fmn(X, w) m(wX/c) x2dx)

0

Jm and hm(i) are respectively, the spherical Bessel function and

Hankel function of the first kind and Ymn is the spherical harmonic

of order mn. The functions fmn(x, w) are defined by

fmn(X, ) = f sinede do f(x, w)Ymn (e,o). (5)

0 0

These functions are the coefficients of f in its spherical harmonic

expansion
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00 m
f(l, W) = , E fin (x, w)Ymn(6,0). (6)

n=O n= -m

The representation (3) arises from the Green's function

representation of the solution2 and the spherical harmonic

expansion of the Green's function in Ref. 2 on p. 742.

Since the spherical harmonics are a complete set of

functions, knowledge of the coefficients fmn constitutes knowledge

of f itself. However, from (3, 4, 5) it is seen that the radiated

field (i.e., u for x > a) is a function, not ol fmn 's, but of their

projections cmn on the spherical Bessel functioi, {jm} . Since the

set of functions {jm Ymn} are not complete, this led in Ref. I to

one analytical characterization of the non-uniqueness of the solution

of the inverse source problem.

In the particular solution of the inverse source problem

in terms of spherical harmonics, one could only hope to determine

the coefficients cmn and not the coefficients fmn" It will now

be shown how this can be done without resorting to an ill-conditioned

integral equation.

To begin, the function v(x, w) is introduced, denoting any

solution of the homogeneous reduced wave equation in the region D,

on the boundary of which (MD) the radiated field, u(x, w) is to be

observed. Now Green's theorem is applied on the domain D to the

quantity

v(x, W)[V 2 + W2c 2Ju(j, W) -u(x W)[V 2 + W2 c' 2J V(, W).

The result is
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f v(L, w) f(x, w) dV f f {u. - vtU) dA (7)

x<a aD

For any function v(x, w) of the prescribed type, this is an integral

equation for f(x, w). A particular choice suggested by the discussion

above is any function in the class

'mn = Jm(wx/c)Ymn(e,'), m = 1, 2, ... , l < m . (8)

With v(x, w) = 'mn, (7) becomes

cmn = fi uTa-n - T* dA. (9)

aD

Thus, the cmn'S are given in terms of well-conditioned operations--

multiplication by known functions and integration--on the observed

data.

In Ref. 1, an equivalent characterization of non-uniqueness

was given in terms of the space-time transform, f(k, w), of the

source distribution. In particular, it was shown that the radiated

field was given totaZZy in terms of the value of f(k, w) on the

hyper-cone where

?
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k IJw/c . (10)

Conversely, from observations of the radiated field and its normal

derivative one can only determine f(k, w) on this hyper-cone.

These function values can also be extracted from (7) in

a well-conditioned manner. To do so, one need only choose v to be

in the continuum of functions over unit vectors k,

v(1, w, k) = exp{twk - x/c} . (11)

Now (7) becomes

f( A °

f(k, W) = kk. n u - - exp{ik. x1 dA,

3D

(12)
A

k = wk/c.

A

Here n is the unit outward normal to 9D.

In Reference 1, the function

v(1, w, 0) j(w R/c), R = - (13)

was used. It was this function which led to an ill-conditioned

integral equation for f. It is the authors' present point of view

that this is to be rejected as a poor choice for v(x, w).
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